Tishanskiysdk.ru

Про кризис и деньги
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Факторный анализ включает

Как используется факторный анализ

Все процессы, происходящие в бизнесе, взаимосвязаны. Между ними прослеживается как прямая, так и косвенная связь. Различные экономические параметры изменяются под действием различных факторов. Факторный анализ (ФА) позволяет выявить эти показатели, проанализировать их, изучить степень влияния.

Понятие факторного анализа

Факторный анализ – это многомерная методика, позволяющая изучить взаимосвязи между параметрами переменных. В процессе происходит исследование строения ковариационных или корреляционных матриц. Факторный анализ используется в самых различных науках: психометрике, психологии, экономике. Основы этого метода были разработаны психологом Ф. Гальтоном.

Задачи проведения

Для получения достоверных результатов лицу требуется сравнить показатели по нескольким шкалам. В процессе определяется корреляция полученных значений, их сходство и различия. Рассмотрим базовые задачи факторного анализа:

  • Обнаружение существующих значений.
  • Подбор параметров для полноценного анализа значений.
  • Классификация показателей для системной работы.
  • Обнаружение взаимосвязей между результативными и факторными значениями.
  • Определение степени влияния каждого из факторов.
  • Анализ роли каждого из значений.
  • Применение факторной модели.

Исследован должен быть каждый параметр, который влияет на итоговое значение.

Методики факторного анализа

Методы ФА могут использоваться как в совокупности, так и раздельно.

Детерминированный анализ

Детерминированный анализ используется наиболее часто. Связано это с тем, что он достаточно прост. Позволяет выявить логику воздействия основных факторов компании, проанализировать их влияние в количественных значениях. В результате ДА можно понять, какие факторы следует изменить для улучшения эффективности работы компании. Преимущества метода: универсальность, легкость использования.

Стохастический анализ

Стохастический анализ позволяет проанализировать существующие косвенные связи. То есть происходит исследование опосредованных факторов. Метод используется в том случае, если невозможно найти прямые связи. Стохастический анализ считается дополнительным. Он используется только в некоторых случаях.

Что понимается под косвенными связями? При прямой связи при изменении аргумента изменятся и значение фактора. Косвенная связь предполагает изменение аргумента с последующим изменением сразу нескольких показателей. Метод считается вспомогательным. Связано это с тем, что специалисты рекомендуют изучать в первую очередь прямые связи. Они позволяют составить более объективную картину.

Этапы и особенности факторного анализа

Анализ по каждому фактору дает объективные результаты. Однако применяется он крайне редко. Связано это с тем, что в процессе выполняются сложнейшие вычисления. Для их проведения потребуется специальное программное обеспечение.

Рассмотрим этапы ФА:

  1. Установление цели проведения расчетов.
  2. Отбор значений, которые непосредственно или косвенно влияют на конечный результат.
  3. Классификации факторов для комплексного исследования.
  4. Обнаружение зависимости между выбранными параметрами и конечным показателем.
  5. Моделирование взаимных связей между результатом и факторами, влияющими на него.
  6. Определение степени воздействия значений и оценка роли каждого из параметров.
  7. Использование образованной факторной таблицы в деятельности предприятия.

К СВЕДЕНИЮ! Факторный анализ предполагает сложнейшие вычисления. Поэтому лучше доверить его проведение профессионалу.

ВАЖНО! Крайне важно при проведении расчетов правильно отобрать факторы, которые влияют на результат деятельности предприятия. Отбор факторов зависит от определенной сферы.

Факторный анализ рентабельности

ФА рентабельности проводится для анализа рациональности распределения ресурсов. В результате можно определить, какие факторы наибольшим образом влияют на конечный результат. В результате можно оставить только те факторы, которые наилучшим образом воздействуют на эффективность. На основании полученных данных можно изменить ценовую политику компании. На себестоимость продукции могут влиять следующие факторы:

  • постоянные издержки;
  • переменные издержки;
  • прибыль.

Уменьшение издержек провоцирует повышение прибыли. При этом себестоимость не изменяется. Можно сделать вывод о том, что на прибыльность влияют имеющиеся издержки, а также объем проданной продукции. Факторный анализ позволяет определить степень влияния этих параметров. Когда имеет смысл его проводить? Основной повод к проведению – уменьшение или повышение прибыльности.

Факторный анализ проводится посредством следующей формулы:

Rв= ((Вт-СБ -КРБ-УРБ)/ Вт) — (ВБ-СБ-КРБ-УРБ)/ВБ, где:

ВТ – выручка за нынешний период;

СБ – себестоимость за нынешний период;

КРБ – коммерческие траты за нынешний период;

УРБ – управленческие траты за предшествующий период;

ВБ – выручка за предшествующий период;

КРБ – коммерческие траты за предшествующий период.

Иные формулы

Рассмотрим формулу расчета степени воздействия себестоимости на прибыльность:

Rс= ((Вт-СБот -КРБ-УРБ)/ Вт) — (Вт-СБ-КРБ-УРБ)/Вт,

СБот – это себестоимость продукции за нынешний период.

Формула для расчета влияния управленческих трат:

Rур= ((Вт-СБ -КРБ-УРот)/ Вт) — (Вт-СБ-КРБ-УРБ)/Вт,

УРот – это управленческие траты.

Формула для вычисления степени воздействия коммерческих издержек:

Rк= ((Вт-СБ -КРо-УРБ)/ Вт) — (Вт-СБ-КРБ-УРБ)/Вт,

КРо – это коммерческие траты за предыдущее время.

Совокупное воздействие всех факторов высчитывается по следующей формуле:

Rоб=Rв+Rс+Rур+Rк.

ВАЖНО! При расчетах имеет смысл высчитывать влияние каждого фактора в отдельности. Результаты общего ФА имеют небольшую ценность.

Пример

Рассмотрим показатели организации за два месяца (за два периода, в рублях). В июле доход организации составил 10 тысяч, себестоимость продукции – 5 тысяч, административные траты – 2 тысячи, коммерческие траты – 1 тысяча. В августе доход компании составил 12 тысяч, себестоимость продукции – 5,5 тысяч, административные траты – 1,5 тысячи, коммерческие траты – 1 тысяча. Проводятся следующие расчеты:

R=((12 тысяч-5,5 тысяч-1 тысяча-2 тысячи)/12 тысяч)-((10 тысяч- 5,5 тысяч-1 тысяча-2 тысячи)/10 тысяч)=0,29-0,15=0,14

Из этих расчетов можно сделать вывод о том, что прибыль организации повысилась на 14%.

Факторный анализ прибыли

Сначала требуется рассчитать балансовую прибыль организации:

Р = РР+ РФ + РВН, где:

Р –прибыль или убыток;

РР – прибыль от реализации;

РФ – результаты финансовой деятельности;

РВН – сальдо доходов и расходов от внереализационных действий.

Затем нужно определить результат от продажи товаров:

РР = N – S1 –S2, где:

N – выручка от продажи товаров по отпускным ценам;

S1 – себестоимость проданной продукции;

S2 – коммерческие и управленческие траты.

Ключевым фактором при расчете прибыли является оборот компании по продаже компании.

К СВЕДЕНИЮ! Факторный анализ крайне сложно проводить вручную. Для него можно использовать специальные программы. Самая простая программа для расчетов и автоматического анализа – Microsoft Excel. В ней есть инструменты для анализа.

Факторный анализ, его виды и методы

Все явления и процессы хозяйственной деятельности предприятий находятся во взаимосвязи и взаимообусловленности. Одни из них непосредственно связаны между собой, другие косвенно. Отсюда важным методологическим вопросом в экономическом анализе является изучение и измерение влияния факторов на величину исследуемых экономических показателей.

Факторный анализ в учебной литературе трактуется как раздел многомерного статистического анализа, объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц.

Свою историю факторный анализ начинает в психометрике и в настоящее время широко используется не только в психологии, но и в нейрофизиологии, социологии, политологии, в экономике, статистике и других науках. Основные идеи факторного анализа были заложены английским психологом и антропологом Ф. Гальтоном. Разработкой и внедрением факторного анализа в психологии занимались такие ученые как: Ч.Спирмен, Л.Терстоун и Р.Кеттел. Математический факторный анализ разрабатывался Хотеллингом, Харманом, Кайзером, Терстоуном, Такером и другими учеными.

Данный вид анализа позволяет исследователю решить две основные задачи: описать предмет измерения компактно и в то же время всесторонне. С помощью факторного анализа возможно выявление факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.

Цели факторного анализа

К примеру, анализируя оценки, полученные по нескольким шкалам, исследователь отмечает, что они сходны между собой и имеют высокий коэффициент корреляции, в этом случае он может предположить, что существует некоторая латентная переменная, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Такую латентную переменную называют фактором, который влияет на многочисленные показатели других переменных, что приводит к возможности и необходимости отметить его как наиболее общий, более высокого порядка.

Таким образом, можно выделить две цели факторного анализа:

  • определение взаимосвязей между переменными, их классификация, т. е. «объективная R-классификация»;
  • сокращение числа переменных.

Для выявления наиболее значимых факторов и, как следствие, факторной структуры, наиболее оправданно применять метод главных компонентов. Суть данного метода состоит в замене коррелированных компонентов некоррелированными факторами. Другой важной характеристикой метода является возможность ограничиться наиболее информативными главными компонентами и исключить остальные из анализа, что упрощает интерпретацию результатов. Достоинство данного метода также в том, что он – единственный математически обоснованный метод факторного анализа.

Факторный анализ – методика комплексного и системного изучения и измерения воздействия факторов на величину результативного показателя.

Типы факторного анализа

Существуют следующие типы факторного анализа:

1) Детерминированный (функциональный) – результативный показатель представлен в виде произведения, частного или алгебраической суммы факторов.

2) Стохастический (корреляционный) – связь между результативным и факторными показателями является неполной или вероятностной.

3) Прямой (дедуктивный) – от общего к частному.

4) Обратный (индуктивный) – от частного к общему.

5) Одноступенчатый и многоступенчатый.

6) Статический и динамический.

7) Ретроспективный и перспективный.

Также факторный анализ может быть разведочным – он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках и конфирматорным, предназначенным для проверки гипотез о числе факторов и их нагрузках. Практическое выполнение факторного анализа начинается с проверки его условий.

Обязательные условия факторного анализа:

  • Все признаки должны быть количественными;
  • Число признаков должно быть в два раза больше числа переменных;
  • Выборка должна быть однородна;
  • Исходные переменные должны быть распределены симметрично;
  • Факторный анализ осуществляется по коррелирующим переменным.

При анализе в один фактор объединяются сильно коррелирующие между собой переменные, как следствие происходит перераспределение дисперсии между компонентами и получается максимально простая и наглядная структура факторов. После объединения коррелированность компонент внутри каждого фактора между собой будет выше, чем их коррелированность с компонентами из других факторов. Эта процедура также позволяет выделить латентные переменные, что бывает особенно важно при анализе социальных представлений и ценностей.

Этапы факторного анализа

Как правило, факторный анализ проводится в несколько этапов.

Этапы факторного анализа:

1 этап. Отбор факторов.

2 этап. Классификация и систематизация факторов.

Читать еще:  Применение методов экономического анализа

3 этап. Моделирование взаимосвязей между результативным и факторными показателями.

4 этап. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.

5 этап. Практическое использование факторной модели (подсчет резервов прироста результативного показателя).

Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов.

Методы детерминированного факторного анализа: Метод цепных подстановок; Метод абсолютных разниц; Метод относительных разниц; Интегральный метод; Метод логарифмирования.

Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении (по сравнению со стохастическим анализом), позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы, и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства.

Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель.

Методы стохастического факторного анализа: Способ парной корреляции; Множественный корреляционный анализ; Матричные модели; Математическое программирование; Метод исследования операций; Теория игр.

Необходимо также различать статический и динамический факторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

Источник: Анализ и диагностика финансово хозяйственной деятельности предприятия. Учебное пособие. Бальжинов А.В., Михеева Е.В. (скачать)

Факторный анализ

Истинное знание есть знание причин.
Френсис Бэкон

Общие понятия

Хозяйственные процессы и конечные результаты складываются под влиянием объективных и субъективных, внешних и внутренних факторов.

Например, на величину валовой продукции непосредственное влияние оказывают такие факторы, как численность рабочих и уровень производительности труда. Субъективные или косвенные факторы — внутренние (руководство тем или иным производственным коллективом, организация производства, финансов, экономическая или организационная подготовленность исполнителей и т.д.). Следовательно, это изучение и измерение влияния факторов на величину исследуемых экономических показателей. Без всестороннего и тщательного изучения факторов невозможно сделать обоснованные выводы о результатах деятельности, выявить резервы производства, обосновать планы и управленческие решения.

Например, в модели П = ВП — С (прибыль равна выручке за минусом себестоимости) прибыль — результативный показатель, а в модели Rпр = П / РП (рентабельность продаж равна прибыли, деленной на выручку от реализации) прибыль является фактором по отношению к результативному показателю рентабельности продаж.

Различают следующие противоположные типы факторного анализа:

  • детерминированный и стохастический;
  • прямой и обратный;
  • одноступенчатый и многоступенчатый;
  • статический и динамический;
  • ретроспективный (исторический) и перспективный (прогнозный).

Факторный анализ может быть одноуровневым и многоуровневым.

Основные задачи факторного анализа:

  1. Выявление, поиск факторов.
  2. Отбор факторов для анализа исследуемых показателей.
  3. Классификация и систематизация их с целью обеспечения системного подхода.
  4. Моделирование взаимосвязей между результативными и факторными показателями.
  5. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.
  6. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

Факторный анализ — это один из способов снижения размерности, то есть выделения во всей совокупности признаков тех, которые действительно влияют на изменение зависимой переменной. Или группировки сходно влияющих на изменение зависимой переменной признаков. Или группировки просто сходно изменяющихся признаков. Предполагается, что наблюдаемые переменные являются лишь линейной комбинацией неких ненаблюдаемых факторов. Некоторые из этих факторов являются общими для нескольких переменных, некоторые характерно проявляют себя только в одной. Те, что проявляют себя только в одной, очевидно, ортогональны друг другу и не вносят вклад к ковариацию переменных, а общие — как раз и вносят эту ковариацию. Задачей факторного анализа является как раз восстановление исходной факторной структуры исходя из наблюдаемой структуры ковариации переменных, несмотря на случайные ошибки ковариации, неизбежно возникающие в процессе снятия наблюдения.

Коэффициент взаимосвязи между некоторой переменной и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой (Factor load) данной переменной по данному общему фактору. Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору.

Процесс стохастического факторного анализа состоит из трех больших этапов:

  1. Подготовки ковариационной матрицы (Иногда вместо нее используется корреляционная матрица);
  2. Выделения первоначальных ортогональных векторов (основной этап);
  3. Вращение с целью получения окончательного решения.

Подготовка к факторному анализу

При подготовке к факторному анализу часто (некоторые методы этого не требуют, но большая часть — требует) составляют ковариационные и корреляционные матрицы. Это матрицы, составленные из ковариации и корреляций векторов-атрибутов (строки и столбцы — атрибуты, пересечение — ковариация/корреляция).

Ковариация двух векторов:

математическое ожидание

Корреляция двух векторов:

— дисперсия.

Обратите внимание, что в этом случае корреляция и ковариация двух векторов — числа, так как считаются через матожидание вектора, а матожидание вектора — число.

Таким образом, мы переходим от матрицы, составленной из объектов (которые могут быть и не математическими), к матрице, оперирующей уже исключительно математическими понятиями, и абстрагируемся от объектов, уделяя внимания только атрибутам.

Нахождение первичной структуры факторов


Метод главных компонент

Метод главных компонент стремится выделить оси, вдоль которых количество информации максимально, и перейти к ним от исходной системы координат. При этом некоторое количество информации может теряться, но зато сокращается размерность.

Этот метод проходит практически через весь факторный анализ, и может меняться путем подачи на вход разных матриц, но суть его остается неизменной.

Основной математический метод получения главных осей — нахождение собственных чисел и собственных векторов ковариационной матрицы таких, что:

λ — собственное число R, R — матрица ковариации, V — собственный вектор R. Тогда :

и решение есть когда:

где R — матрица ковариации, λ — собственное число R, E — единичная матрица. Затем считаем этот определитель для матрицы соответствующей размерности.

V находим, подставляя собственные числа по очереди в

и решая соответствующие системы уравнений.

Сумма собственных чисел равна числу переменных, произведение — детерминанту корелляционной матрицы. Собственное число представляет собой дисперсию оси, наибольшее — первой и далее по убыванию до наименьшего — количество информации вдоль последней оси. Доля дисперсии, приходящаяся на данную компоненту, считается отсюда легко: надо разделить собственное число на число переменных m.

Коэффициенты нагрузок для главных компонент получаются делением коэффициентов собственных векторов на квадратный корень соответствующих собственных чисел.

Алгоритм NIPALS вычисления главных компонент

На практике чаще всего для определения главных компонент используют итерационные методы, к примеру, NIPALS:

0. Задается 0 T размера 2*2 для двух столбцов(факторов) bi и bj матрицы B такую, что критерий для матрицы [bibj]R максимален.

2. Заменяем столбцы bi и bj на столбцы .

3. Проверяем, все ли столбцы перебрали. Если нет, то 1.

4. Проверяем, что критерий для всей матрицы вырос. Если да, то 1. Если нет, то конец.

Критерий квартимакс

Формализуем понятие факторной сложности q i-ой переменной через дисперсию квадратов факторных нагрузок факторов:

,

где r — число столбцов факторной матрицы, bij — факторная нагрузка j-го фактора на i-ю переменную, — среднее значение. Критерий квартимакс старается максимизировать сложность всей совокупности переменных, чтобы достичь легкости интерпретации факторов (стремится облегчить описание столбцов):

Учитывая, что — константа (сумма собственных чисел матрицы ковариации) и раскрыв среднее значение (а также учтя, что степенная функция растет пропорционально аргументу), мы получим:

Этот критерий и предполагается итеративно максимизировать. Этот критерий стремится к одному генеральному фактору.

Критерий варимакс

Этот критерий использует формализацию сложности фактора через дисперсию квадратов нагрузок переменной:

И тогда критерий в общем

При этом, как легко заметить, максимизируется сложность описания Факторные нагрузки могут нормироваться для избавления от влияния отдельных переменных. Дает лучшее разделение факторов, чем квартимакс.

Другие критерии

Можно обобщить два вышеприведенных критерия и получить новый:

Запишем его в следующем виде: Тогда при γ = 0 это квартимакс, при γ = 1 — варимакс, а при — эвримакс, а при γ = 0,5 биквартимакс.

Косоугольное вращение

Косоугольное вращение не требует ортогональности между факторами. В остальном его алгоритм похож на ортогональное вращение. За счет этого можно получать больше нулей в факторных нагрузках и получать более характерные факторы. Правда, при этом возникает корреляция между факторами, что вообще не очень хорошо и приходится объяснять факторами 2го порядка. Их, кстати, тоже можно вычислить, причем используя ортогональное вращение и косоугольные факторы как исходные данные.

Методы введения вторичных осей

На основе квартимакса создается критерий квартимин:

где aij и aij — проекции на j-ю и k-ю оси. При применении ортогонального вращения этот критерий сводится к квартимаксу. При наипростейшей структуре N=0, а реально должно к нему стремится.

На основе варимакса создается критерий коваримин:

Минимизируется ковариация квадратов проекции на различные оси.

Объединение их, как и в ортогональном вращении, приводит к критерию облимин:

Прямой метод облимин

Используется критерий облимин, только при этом в качестве аргументов выступают нагрузки факторов первичной структуры:

d регулирует косоугольность решения, меньшие отрицательные d — больше ортогональность

интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
мой телеграмм https://t.me/peshekhonovandrei
мой твиттер https://twitter.com/Andrey54708595
мой инстаграм https://www.instagram.com/andreipeshekhonow/

[b]Мой комментарий:
Андрей спрашивает: Краснодарская синагога — это что, военный объект?
— Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

Факторный анализ;

Возникновение и развитие факторного анализа тесно связано с измерениями в психологии. Длительное время факторный анализ и воспринимался как математическая модель в психологической теории интеллекта. Лишь начиная с 50-х годов ХХ столетия, одновременно с разработкой математического обоснования факторного анализа, этот метод становится общенаучным. К настоящему времени факторный анализ является неотъемлемой частью любой серьезной статистической компьютерной программы и входит в основной инструментарий всех наук, имеющих дело с многопараметрическим описанием изучаемых объектов, таких, как социология, экономика, биология, медицина и другие.

Основная идея факторного анализа была сформулирована еще Ф. Гальтоном, основоположником измерений индивидуальных различий. Она сводится к тому, что если несколько признаков, измеренных на группе индивидов, изменяются согласованно, то можно предположить существование одной общей причины этой совместной изменчивости — фактора как скрытой (латентной), непосредственно не доступной измерению переменной.

Таким образом, главная цель факторного анализа — уменьшение размерности исходных данных с целью их экономного описания при условии минимальных потерь исходной информации. Результатом факторного анализа является переход от множества исходных переменных к существенно меньшему числу новых переменных — факторов. Факторпри этом интерпретируется как причина совместной изменчивости нескольких исходных переменных.

Если исходить из предположения о том, что корреляции могут быть объяснены влиянием скрытых причин — факторов, то основное назначение факторного анализа — анализ корреляций множества признаков.

Одна из основных задач факторного анализа – интерпретация факторов. Ее решение заключается в идентификации факторов через исходные переменные. Осуществляется по результатам обработки с помощью факторных нагрузок. Факторные нагрузки – аналоги коэффициентов корреляции, показывают степень взаимосвязи соответствующих переменных и факторов. Чем больше абсолютная величина факторной нагрузки, тем сильнее связь переменной с фактором, тем больше данная переменная обусловлена действием соответствующего фактора. Каждый фактор идентифицируется по тем переменным, с которыми он в наибольшей степени связан, то есть по переменным, имеющим по этому фактору наибольшие нагрузки. Идентификация фактора заключается, как правило, в присвоении ему имени, обобщающего по смыслу наименования входящих в него переменных.

Если исследователя интересует только структура измеренных признаков, на этом факторный анализ завершается. Продолжая факторный анализ, исследователь далее может вычислить значения факторов для испытуемых, например, с целью их дифференциации по преобладанию арифметических или вербальных способностей.

Выбирая факторный анализ как средство изучения корреляций, исследователь должен отдавать себе отчет в том, что это один из самых сложных и трудоемких методов. Зачастую нет веских оснований предполагать наличие факторов как скрытых причин изучаемых корреляции, и задача заключается лишь в обнаружении группировок тесно связанных переменныx. Тогда целесообразнее вместо факторного анализа использовать кластерный анализ корреляций. Помимо простоты, кластерный анализ обладает еще одним преимуществом: его применение не связано с потерей исходной информации о связях между переменными, что неизбежно при факторном анализе. И уже после выделения групп тесно связанных переменных можно попытаться применить факторный анализ для их объяснения.

Итак, можно сформулировать основные задачи факторного анализа:

1. Исследование структуры взаимосвязей переменных. В этом случае каждая группировка переменных будет определяться фактором, по которому эти переменные имеют максимальные нагрузки.

2. Идентификация факторов как скрытых (латентных) переменных — причин взаимосвязи исходных переменных.

3. Вычисление значений факторов для испытуемых как новых, интегральных переменных. При этом число факторов существенно меньше числа исходных переменных. В этом смысле факторный анализ решает задачу сокращения количества признаков с минимальными потерями исходной информации.

МАТЕМАТИКО-СТАТИСТИЧЕСКИЕ ИДЕИ И ПРОБЛЕМЫ МЕТОДА

Модель главных компонент лежит в основе большинства методов факторного анализа и часто рассматривается как один из его самостоятельных вариантов. Анализ главных компонентпреобразует набор коррелирующих исходных переменных в другой набор — некоррелирующих переменных. Проще всего понять суть этого метода, привлекая геометрические представления.

Предположим, у нас имеются две положительно коррелирующие переменные Х и У, измеренные на группе объектов. Тогда график двумерного распределения (рассеивания) этих объектов в осях измеренных признаков (координаты объектов заданы значениями признаков) будет представлять собой эллипс (рис. 1). Главная ось эллипса М1, — это прямая, вдоль которой будет наблюдаться наибольший разброс данных. Вдоль второй оси эллипса М2, перпендикулярной первой и проходящей через ее середину, будет наблюдаться наименьший разброс данных.

Рисунок 1. Рисунок 2.

Если перед нами стоит задача представления объектов (точек) в терминах только одной размерности (переменной), то главная ось эллипса является наиболее подходящей, так как вдоль нее объекты отличаются друг от друга лучше (дисперсия больше), чем вдоль любой другой прямой, в том числе и вдоль отдельно оси Х или У.

Анализ главных компонент можно представить как преобразование информации, содержащейся в исходных данных. Главную компоненту можно определить как направление, в котором наблюдается наибольший разброс объектов. Представляя объекты в единицах измерения по этой оси, мы теряем минимум информации об отличии объектов друг от друга. Чем сильнее взаимосвязь двух переменных, тем меньше исходной информации теряется при переходе от двух переменных к одной главной компоненте. Если две переменные не коррелируют, то компоненты (оси) являются равнозначными по информативности, и невозможно определить одну из них как «главную» (рис. 2).

При наличии трех и более коррелирующих переменных принцип определения главных компонент тот же, только модель будет не на плоскости, а в — мерном пространстве, и будет представлять собой — мерный эллипсоид.

Проблемы факторного анализа.

1. Проблема числа факторов. Это первая проблема при проведении факторного анализа. Обычно заранее неизвестно, сколько факторов необходимо и достаточно для представления данного набора переменных. Сама же процедура факторного анализа предполагает предварительное задание числа факторов. Следовательно, исследователь должен заранее определить или оценить их возможное количество. Для этого на первом этапе факторного анализа применяется анализ главных компонент и используется график собственных значений. Для определения числа факторов используется два критерия – критерий Кайзера и критерий отсеивания Кеттела. Эти критерии являются лишь примерным ориентиром, окончательное решение о числе факторов применяется после интерпретации факторов.

2. Проблема общности. Это вторая главная проблема факторного анализа. Общность – это часть дисперсии переменной, обусловленная действием общих факторов. Характерность – часть дисперсии, обусловленная спецификой данной переменной и ошибками измерений. Иными словами, общность – это вклад всех факторов в единичную дисперсию переменной. Проблема общностей заключается в том, что они как и число факторов, неизвестны до начала анализа, но должны каким-то образом задаваться заранее, так как величины факторных нагрузок зависят от величин общностей. В зависимости от решения этой проблемы различают разные методы факторного анализа, то есть, разные способы получения факторной структуры при заданном числе факторов. Наиболее часто применимые методы – анализ главных компонент, факторный анализ образов, метод главных осей, метод невзвешенных наименьших квадратов, обобщенный метод наименьших квадратов и метод максимального правдоподобия.

3. Проблема вращения и интерпретации. Это третья основная проблема факторного анализа, решение которой связано с геометрическим представлением факторной структуры. Факторная структура может быть представлена в виде точек-признаков в пространстве факторов. Координаты точки – это факторные нагрузки. Осуществляют поворот осей, чтобы каждая переменная в результате вращения оказалась вблизи оси фактора (варимакс-вращение). В результате вращения каждая переменная имеет нагрузку только по одному фактору. По составу переменных производят интерпретацию факторов.

4. Проблема оценки значений факторов. После интерпретации факторной структуры допустима оценка значений факторов для объектов. Это позволяет перейти к существенно меньшему числу факторов как новых переменных. Это может понадобиться исследователю как для более компактного представления различий между объектами, так и для дальнейшего анализа – регрессионного, дисперсионного и т.д. Для оценки значения фактора используется линейная комбинация значений исходных переменных. Проблема состоит в том, что невозможно точно выразить общий фактор через исходные переменные, можно получить лишь оценку с различной надежностью, так как каждая из переменных содержит кроме общей характерную часть. Факторизация оценки будет тем надежнее, чем больше исходные переменные соответствуют требованиям, предъявляемым к метрическим переменным.

В заключение обзора математических идей и проблем метода следует отметить, что факторный анализ – сложная, но изящная математическая процедура, имеющая достаточное статистическое обоснование. Факторный анализ не добавляет новой информации к эмпирическим данным, только позволяет их интерпретировать.

ПОСЛЕДОВАТЕЛЬНОСТЬ ФАКТОРНОГО АНАЛИЗА

Особенность факторного анализа заключается в неопределенности решения его основных проблем. Нет четких критериев качества, есть лишь рекомендации, которыми руководствуется исследователь. Поэтому факторный анализ – пошаговая процедура, где на каждом шаге принимается решение о дальнейших преобразованиях данных.

Весь процесс факторного анализа можно представить как выполнение шести этапов:

1. Выбор исходных данных. Основное требование – все признаки должны быть измерены в метрической шкале. Недопустима функциональная зависимость и корреляции, близкие к единице (для устранения этих переменных вычисляют матрицу интеркорреляций).

2. Решение проблемы числа факторов. Матрица интеркорреляций обрабатывается с использованием анализа главных компонент, применяются критерии отсеивания.

3. Факторизация матрицы интеркорреляций одним из методов.

4. Вращение факторов и их предварительная интерпретация.

5. Принятие решения о качестве факторной структуры.

6. Вычисление факторных коэффициентов и оценок.

До широкого распространения персональных компьютеров полновесный факторный анализ был экзотической, весьма трудоемкой многоэтапной процедурой, когда очередной шаг исследователь выбирает по результатам выполнения предыдущих этапов. В настоящее время можно контролировать процесс факторного анализа, пользуясь современным программным обеспечением. Для этого не нужны знания программиста и математика, достаточны осведомленность в основных математико-статистических идеях метода и умение «читать» промежуточные и конечные результаты факторного анализа. При этом факторный анализ может быть рекомендован для решения очень широкого круга не только исследовательских, но и практических задач. Перечислим некоторые из них:

· факторный анализ как инструмент интерпретации позволяет быстро выделить группировки (кластеры) взаимосвязанных переменных, решая проблемы корреляционного анализа: наличия множества переменных и множества статистических проверок.

· факторный анализ как альтернатива простого суммирования значений исходных переменных позволяет учитывать реальную структуру данных и избегать излишних потерь драгоценной исходной информации. Затраты времени и сил па такую обработку данных при помощи факторного анализа часто меньше, чем при суммировании баллов «вручную». При этом выигрыш весьма ощутим — в детальности и корректности получаемых результатов.

· факторный анализ как подготовительный этап для прогнозирования позволяет получить некоррелированные интегральные переменные (факторы), наиболее пригодные для применения в регрессионном или дискриминантном анализе.

· факторный анализ при исследовании индивидуальных или межгрупповых различий по множеству признаков позволяет сократить исходное множество признаков до нескольких факторов, по которым различия проявляются наиболее ярко.

ВОПРОС 5: Факторный анализ и его теоретические составляющие. Понятие, типы и задачи факторного анализа. Способы измерения влияния факторов в детерминированном анализе

1. Понятие, типы и задачи факторного анализа.

2. Способы измерения влияния факторов в детерминированном анализе.

1.

Каждый результативный показатель зависит от многочислен­ных и разнообразных факторов. Чем более детально исследуется влияние факторов на величину результативного показателя, тем точнее результаты анализа и оценка качества работы предприя­тий. Отсюда важным методологическим вопросом в анализе яв­ляется изучение и измерение влияния факторов на величину ис­следуемых экономических показателей.

Под факторным анализом (диагностикой) понимается методика и системного изучения и измерения воздействия факторов на величину результативных показателей.

Различают следующие типы факторного анализа:

• детерминированный (функциональный) и стохастический (корреляционный);

• прямой (дедуктивный) и обратный (индуктивный);

• одноступенчатый и многоступенчатый;

• статический и динамический;

• ретроспективный и перспективный (прогнозный).

Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с резуль­тативным показателем носит функциональный характер, т.е. ре­зультативный показатель может быть представлен в виде произ­ведения, частного или алгебраической суммы факторов.

Стохастический факторный анализ представляет собой методику иссле­дования влияния факторов, связь которых с результативным показателем в отличие от функциональной является неполной, ве­роятностной (корреляционной). Если при функциональной зави­симости с изменением аргумента всегда происходит соответству­ющее изменение функции, то при корреляционной связи измене­ние аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих дан­ный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочета­ния других факторов, воздействующих на этот показатель.

При прямом факторном анализе исследование ведется дедук­тивным способом — от общего к частному. Обратный факторный анализ осуществляет исследование причинно-следственных свя­зей способом логичной индукции — от частных, отдельных факто­ров к обобщающим.

Факторный анализ может быть одноступенчатым и многоступенчатым. Первый тип используется для исследования факторов только одного уровня (одной ступени) подчинения без их детали­зации на составные части. Например, у = а — b. При многоступен­чатом факторном анализе проводится детализация факторов а и b на составные элементы с целью изучения их поведения. Дета­лизация факторов может быть продолжена дальше. В данном случае изучается влияние факторов различных уровней соподчиненности.

Статический анализ применяется при изучении влияния фак­торов на результативные показатели на соответствующую дату. Динамический анализ представляет собой методику исследования причинно-следственных связей в динамике.

Ретроспективный факторный анализ изучает причины изме­нения результативных показателей за прошлые периоды, а перс­пективный — исследует поведение факторов и результативных по­казателей в перспективе.

Основными задачами факторного анализа являются следую­щие:

· отбор факторов, которые определяют исследуемые результа­тивные показатели;

· классификация и систематизация факторов с целью обеспече­ния возможностей системного подхода;

· определение формы зависимости между факторами и: резуль­тативным показателем;

· моделирование взаимосвязей между результативными и фак­торными показателями;

· расчет влияния факторов и оценка роли каждого из них в из­менении величины результативного показателя;

· работа с факторной моделью, т.е. практическое ее использо­вание для управления экономическими процессами.

Отбор факторов для анализа того или другого показателя осу­ществляется на основе теоретических и практических знаний, при­обретенных в этой отрасли. При этом обычно исходят из принци­па: чем больше комплекс факторов исследуется, тем точнее будут результаты анализа.

Вместе с тем необходимо иметь в виду, что если этот комплекс факторов рассматривается как механическая сумма, без учета их взаимодействия, без выделения главных, оп­ределяющих, то выводы могут быть ошибочными. В экономичес­ком анализе взаимосвязанное исследование влияния факторов на величину результативных показателей достигается с помощью их систематизации.

2.

В детерминированном анализе для определения величины вли­яния отдельных факторов на изменение результативных показа­телей используются следующие способы: цепной подстановки, индексный, абсолютных разниц, относительных разниц, пропор­ционального деления, интегральный и логарифмирования.

Простейшие детерминированные математические модели широко используются в анализе факторов производства. В практике анализа используют различные типы и виды моделей.

Аддитивные модели представляют собой алгебраическую сумму показателей и имеют следующий вид:

.

К таким моделям, например, относятся показатели себестоимости во взаимосвязи с элементами затрат на производство и со статьями затрат; показатель объема производства продукции в его взаимосвязи с объемом выпуска отдельных изделий или объема выпуска в отдельных подразделениях.

Мультипликативные модели в обобщенном виде могут быть представлены следующей формулой.

.

Примером мультипликативной модели является двухфакторная модель объема реализации:

,

где Ч – среднесписочная численность работников;

CB – средняя выработка на одного работника.

.

Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) — ТОБ.Т:

,

где ЗТ – средний запас товаров;

ОР – однодневный объем реализации.

Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:

Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.

Наиболее универсальным из сложных детерминированных моделей является способ цепной под­становки. Его сущность состоит в пос­ледовательном рассмотрении влияния отдельных факторов на общий результат. При этом последовательно заменяют базисные или плановые показатели фактическими и сравнивают новый ре­зультат, получаемый после замены, с прежним.

В общем виде применение способа цепных постановок можно описать следующим образом:

где a, b, c – базисные значения факторов, оказывающих влияние на обобщающий показатель у;

a1 , b1, c1 – фактические значения факторов;

ya, yb – промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.

Общее изменение ∆у=у1–у складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:

Способ абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора способом разниц определяется как произведение отклонения изучаемого фактора на базисное или отчетное значение другого фактора в зависимости от выбранной последовательности подстановки:

Способ относительных разниц применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных и смешанных моделях вида у = (а – в) х с. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.

Для мультипликативных моделей типа у = а х в х с методика анализа следующая:

— находят относительное отклонение каждого факторного показателя:

— определяют отклонение результативного показателя у за счет каждого фактора

Метод цепных подстановок и способ абсолютных разниц име­ют общий недостаток, суть которого сводится к возникновению неразложимого остатка, который присоединяется к числовому значению влияния последнего фактора. В связи с этим величина влияния факторов на изменение ре­зультативного показателя меняется в зависимости от места, на которое поставлен тот или иной фактор в детерминированной модели.

Чтобы избавиться от этого недостатка, в детерминированном факторном анализе в мультипликативных, кратных и смешанных моделях используется интегральный метод. Использование интег­рального метода позволяет получать более точные результаты расчета влияния факторов по сравнению со способами цепной подстановки, абсолютных и относительных разниц и избежать неоднозначной оценки влияния факторов потому, что в данном случае результаты не зависят от местоположения факторов в мо­дели, а дополнительный прирост результативного показателя, который образуется от взаимодействия факторов, раскладывает­ся между ними пропорционально изолированному их воздействию на результативный показатель.

В ряде случаев для определения величины влияния факторов на прирост результативного показателя может быть использован способ пропорционального деления. Например, рентабельность ак­тивов снизилась на 5% в связи с увеличением активов предприя­тия на 200 тыс. руб. При этом стоимость внеоборотных активов возросла на 300 тыс. руб., а оборотных — уменьшилась на 100 тыс. руб. Значит, за счет первого фактора уровень рентабельности сни­зился, а за счет второго, повысился:

∆Росн = *300 = -7,5%;

∆Роб = *(-100) = +2,5%.

Индексный метод основывается на относительных показате­лях, выражающих отношение уровня данного явления к уровню его в прошлое время или к уровню аналогичного явления, приня­тому в качестве базы. Всякий индекс исчисляется соизмерением отчетной величины с базисной.

Классическая задача, решаемая с помощью индексного метода, — расчет влияния на объем продаж факторов количества и цен по схеме:

Тогда индекс объема продаж (товарооборота), взятый в ценах соответствующих лет, имеет вид:

Iqp = .

А индекс физического товарооборота:

Iq = .

Способ логарифмирования применяется для измерения влияния факторов в мультипликативных моделях. В данном случае резуль­таты расчета, как и при интегрировании, не зависят от места рас­положения факторов в модели и по сравнению с интегральным методом обеспечивается более высокая точность расчетов. Если при интегрировании дополнительный прирост от взаимодействия факторов распределяется поровну между ними, то с помощью логарифмирования результат совместного действия факторов распределяется пропорционально доли изолированного влияния каждого фактора на уровень результативного показателя. В этом его преимущество, а недостаток в ограниченности сферы его при­менения.

Ссылка на основную публикацию
Adblock
detector