Tishanskiysdk.ru

Про кризис и деньги
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Применение методов статистического анализа

Статистические методы исследования

Статистика, как наука, предполагает изучение, обработку и анализ количественных данных о самых различных явлениях в жизни человека. Она применяется во множестве сфер жизнедеятельности: медицина, экономика, производство, социология, предоставление разного рода услуг, природоохранная деятельность и т.д. Даже в быту люди часто сталкиваются с необходимостью использования простых статистических методов для решения возникающих задач. Следовательно, о данном направлении нужно узнать как можно больше полезной информации.

Важность саморазвития в области статистики

Даже если вы не осваивали специальность, предполагающую необходимость работы со статистическими данными, не знаете способов, которыми их можно обрабатывать и исследовать, это не значит, что соответствующая информация недоступна. К счастью, каждый может самостоятельно рассмотреть все эффективные методы анализа, применяемые в статистике, понять, какой из них больше подходит для конкретной ситуации.

Чтобы оценить важность изучения указанных материалов, достаточно рассмотреть, где в повседневной жизни мы можем применять статистические исследования:

· оценка рациональности применения семейного бюджета. Для этого в любом случае придется учитывать статистику доходов и расходов, чтобы уравновесить эти две статьи;

· применение разных диет с целью похудения. Здесь тоже не обходится без простых методов статистики. Вам понадобится знать, насколько удается похудеть с тем или иным рационом, чтобы подобрать оптимальную программу питания для максимально быстрого получения ожидаемого результата;

· профессиональные занятия спортом — еще одна область, где без статистики не обойтись. Здесь нужно учитывать количество калорий, получаемых за день, затрачиваемую на тренировках энергию, результаты занятий. Чтобы понимать, насколько эффективной оказывается выбранная программа, придется проводить хотя бы самые простые подсчеты;

· контроль собственного здоровья. Здесь применяются самые простые методы анализа данных. Например, для статистики вы можете записывать показатели ЧСС, артериального давления, продолжительность сна и т.д. Такое исследование поможет выбрать оптимальный жизненный ритм;

· ведение страниц в социальных сетях, например, Инстаграм, с целью заработка. Вам также понадобится контролировать число подписчиков, сопоставлять его с эффективностью деятельности, величиной полученной прибыли.

Читать еще:  Анализ работы руководителя организации

Как видите, статистические данные – это то, с чем практически каждый из нас сталкивается каждый день. И чтобы их применение было максимально эффективным, нужно знать, какие существуют методы анализа.

Отметим, что разобраться в этой теме сможет каждый желающий – тот, кто занимается саморазвитием, стремится к самосовершенствованию.

Популярные методики анализа в статистике

Рассмотрим самые простые методы, применение которых допускает статистический анализ. Всего их семь:

1. Статистическое наблюдение. Представляет собой обычный сбор информации, который зачастую применяется в социальной сфере. Используется такая методика для получения четких характеристик изучаемых явлений. Все, что нужно в этой ситуации – точные данные, которые можно легко сопоставить для оценки. Они должны быть однообразными.

2. Сводка и группировка материалов наблюдения в статистике. Представляет собой процедуру обработки отдельных единичных фактов, образующих совокупность сведений, полученных в результате проведения каких-либо наблюдений. Такой статистический метод – это способ получения исчерпывающей информации об исследуемых объектах. Чтобы применить методику, необходимо выбрать группировочный признак, определить порядок формирования групп, разработать систему показателей, характеризующих группы, создать примеры таблиц, куда будут заноситься сведения.

3. Абсолютные и относительные статистические величины. С помощью абсолютных величин мы придаем явлениям размерные характеристики. Это может быть время, объем, площадь, масса. Относительные величины представляют собой количественные соотношения, полученные в результате деления одних величин на другие. Таким способом определяют величины уровня развития, динамики интенсивности процесса, структуры и т.д.

4. Вариационные ряды. Такой статистический метод исследования – это дополнение к средним показателям изучаемых величин, их в некоторых ситуациях оказывается недостаточно. Тут внимание сосредоточено на вариации или разбросе показателей каких-либо единиц. Следовательно, речь идет о мониторинге и оценке происходящих изменений.

5. Выборка. Метод предусматривает определение численной характеристики целого по свойствам и отдельно взятых частей. Именно внутренняя связь, которая объединяет единичные части и целое, является основой рассматриваемого метода.

6. Корреляционный и регрессионный анализ. Речь идет об анализе большого количества данных для выявления возможности взаимодействия отдельных показателей. Обычно корреляционный и регрессионный анализ применяются в статистике совместно. Первый позволяет, например, выделить факторы, наиболее воздействующие на конечный признак. Последний может помочь в оценке степени воздействия независимых показателей на зависимый.

Читать еще:  Анализ использования производственных ресурсов

7. Ряды динамики. С их применением очень удобно определить скорость, интенсивность развития какого-либо явления. Для работы понадобится учитывать период времени и связанный с ним уровень, статистический показатель. Данный метод статистики хорошо подходит для ситуаций, когда человеку нужно добиться каких-то целей, например, продвинуть страницу в социальной сети.

Как проводить статистический анализ данных, нужно решать в отдельно взятой ситуации. Метод следует выбирать зависимо от того, что вы планируете исследовать, какие сведения изучать и с какими целями. В любом случае, нам удалось понять, что статистика играет важную роль не только в профессиональной, но и в повседневной жизни человека.

Анализ данных: используем методы статистического исследования

Анализ данных и статистика — вещи одного порядка. Если статистика первооснова и источник информации, то анализ данных — это инструмент для ее исследования, и зачастую анализ данных без статистики невозможен.

Статистика — это изучение любых явлений в числовой форме. Статистика используется анализом данных в количественных исследованиях. Противоположность им — качественные, описывающие ситуацию без применения цифр, в текстовом выражении.

Количественный анализ статистических данных проводится по интервальной шкале и по рациональной:

  • интервальная шкала указывает, насколько тот или иной показатель больше или меньше другого и дает возможность подобрать похожие по свойствам соотношения показатели,
  • рациональная шкала показывает, во сколько раз тот или иной показатель больше или меньше другого, но в ней содержатся только положительные значения, что не всегда будет отражать реальное положение дел.

Как используют Data Mining в компании Mail.ru?

Методы анализа статистических данных

В анализе статистических данных можно выделить аналитический этап и описательный. Описательный этап — последний, он включает представление собранных данных в удобном графическом виде – в графиках, диаграммах, дашбордах. Аналитический этап — это анализ, заключающийся в использовании одного из следующих методов:

  • статистического наблюдения – систематического сбора данных по интересующим характеристикам;
  • сводки данных, в которой можно обработать информацию после наблюдения; она описывает отдельные факты как часть общей совокупности или создает группировки, делит информацию по группам на основании каких-либо признаков;
  • определении абсолютной и относительной статистической величины; абсолютная величина придает данным количественные характеристики в индивидуальном порядке, в независимости от других данных; относительные величины описывают одни объекты или признаки относительно других;
  • метода выборки – использовании при анализе не всех данных, а только их части, отобранной по определенным правилам (выборка может быть случайной, стратифицированной, кластерной и квотной);
  • корреляционного и регрессионного анализа — выявляет взаимосвязи данных и причины, по которым данные зависят друг от друга, определяет силу этой зависимости;
  • метода динамических рядов — отслеживает силу, интенсивность и частоту изменений объектов и явлений; позволяет оценить данные во времени и дает возможность прогнозирования явлений.
Читать еще:  Основные приемы факторного анализа

Программное обеспечение для статистического исследования

Статистические исследования могут проводить маркетологи-аналитики:

Для качественного анализа статистических данных необходимо либо обладать знаниями математической статистики, либо использовать отчетно-аналитическую программу, либо не заниматься этим. Европейские компании давно осознали пользу big data для анализа больших данных, поэтому либо нанимают хороших аналитиков с математическим образованием, либо устанавливают профессиональное программное обеспечение для аналитиков-маркетологов. Ежедневный анализ в этих компаниях помогает им правильно организовывать закупку товаров, их хранение и логистику, корректировать количество персонала и их рабочие графики.

Решения для автоматизации анализа данных позволяют работать с ними аналитикам-маркетологам. Сегодня есть решения, доступные даже небольшим компаниям, такие как Tableau. Их преимущества по сравнению с анализом, проведенным исключительно человеком:

  • невысокая стоимость внедрения (от 2000 рублей в месяц – на февраль 2018 года),
  • современное графическое представление анализа,
  • возможность мгновенно переходить от одного, более полного отчета, к другому, более детальному.

Хотите узнать, как провести анализ и сделать отчеты быстро?

Ссылка на основную публикацию
Adblock
detector