Tishanskiysdk.ru

Про кризис и деньги
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Статистический анализ относится

Статистический анализ

Понятие «статистический анализ» традиционно ассоциируется с исключительно количественными, цифровыми показателями. Слово «статистика» имеет латинское происхождение и означает «состояние, положение вещей с точки зрения закона». Наполеон Бонапарт называл статистику «бюджетом вещей». В современном понимании, этот термин может быть использован в следующих значениях:

ü как специализированная отрасль знания по вопросам сбора и анализа данных. Термин «статистика» в этом значении стало применяться с середины XVIII века в Германии.

ü как массив определенных статистических данных (статистика рождаемости, статистика посещений сайта и т.п.).

ü как измеримая функция наблюдения в математической статистике: , где — выборка.

Принято считать, что статистика, как научное направление, появилось во второй половине XVIII – начале XIX веков. Конечно, методы и процедуры статистического учета применялись и развивались задолго до XVIII века. Действительно, еще в Древнем Китае проводились переписи населения, в Древнем Риме велся учет имущества граждан, да и в других царствах-государствах было что посчитать и записать. Ценность статистических методов, прежде всего в предоставлении фактов в наиболее сжатой форме. Статистика за сотни лет своей эволюции, отдельными элементами или комплексными методиками применялась и применяется и для административного, в том числе социально-политического управления, и для ведения деятельности отдельного предприятия.

Сейчас, в современном мире статистические методы применяются практически во всех сферах деятельности человека и являются методами сбора, классификации данных с последующим их анализом с целью выявления закономерностей.

Методы статистического анализа ориентированы на решения реальных задач, поэтому постоянно появляются и развиваются новые методы. Динамизм развития статистической науки и использование в самых различных областях деятельности человека, затрудняют классификацию статистических методов. Большинство исследователей с легкостью подразделяют эти методы по способу их применения и использования. В соответствии с этим подходом, статистика, как наука в современном мире, по степени охвата исследуемой области и глубины анализа подразделяется на следующие виды:

· теоретическая статистика (общая теория статистики) – разработка и исследование методов общего характера;

· прикладная статистика – разработка методов и моделей получения анализа статистических данных конкретных явлений и процессов в различных областях деятельности. Подразделяется на ряд подразделов, например, такие хорошо разработанные направления статистики, как математическую и экономическую статистику.

· статистический анализ конкретных данных. Например, медицинская статистика, правовая статистика, биометрика (измерение каких-либо параметров тела человека), технометрика (измерение технических параметров приборов и оборудования), наукометрика (статистические параметры состояния и развития различных направлений сферы образования и науки) и т.д.

Методы статистического анализа могут быть классифицированы по объему анализируемых данных и глубине их взаимосвязи и взаимозависимости. Данная классификация приведена на рисунке 8.2.1 «Классификация методов статистического анализа».

Статистический анализ — это. Понятие, методы, цели и задачи статистического анализа

Достаточно часто возникают явления, которые можно проанализировать исключительно при помощи статистических методов. В этой связи для каждого субъекта, стремящегося глубоко изучить проблему, проникнуть в суть темы, важно иметь представление о них. В статье разберемся, что такое статистический анализ данных, каковы его особенности, а также какие методы применяют при его проведении.

Особенности терминологии

Статистику рассматривают в качестве специфичной науки, системы госорганов, а также как набор цифр. Между тем далеко не все цифры можно считать статистикой. Разберемся в этом вопросе.

Для начала следует вспомнить, что слово «статистика» имеет латинские корни и происходит от понятия status. В буквальном переводе термин означает «определенное положение предметов, вещей». Следовательно, статистическими признаются только такие данные, с помощью которых фиксируются относительно устойчивые явления. Анализ, собственно, и выявляет эту устойчивость. Его используют, к примеру, при изучении социально-экономических, политических явлений.

Назначение

Применение статистического анализа позволяет отображать количественные показатели в неразрывной связи с качественными. В результате исследователь может увидеть взаимодействие фактов, установить закономерности, выявить типичные признаки ситуаций, сценарии развития, обосновать прогноз.

Статистический анализ – это один из ключевых инструментов СМИ. Чаще всего его используют в деловых изданиях, таких как, например, «Ведомости», «Коммерсант», «Эксперт-профи» и пр. В них всегда публикуются «аналитические рассуждения» о валютном курсе, котировке акций, учетных ставках, инвестициях, рынке, экономике в целом.

Разумеется, чтобы результаты анализа были достоверными, постоянно проводится сбор данных.

Источники информации

Сбор данных может осуществляться по-разному. Главное, чтобы способы не нарушали закон и не ущемляли интересы других лиц. Если говорить о СМИ, то для них ключевыми источниками информации выступают государственные статистические органы. Эти структуры должны:

  1. Собирать отчетные сведения в соответствии с утвержденными программами.
  2. Группировать информацию по тем или иным критериям, наиболее значимым для исследуемого явления, формировать сводки.
  3. Проводить собственный статистический анализ.

В задачи уполномоченных госорганов входит также предоставление полученных ими данных в отчетах, тематических подборках или пресс-релизах. В последнее время статистика публикуется на официальных сайтах госструктур.

Кроме указанных органов, информацию можно получить в Едином госреестре предприятий, учреждений, объединений и организаций. Цель его создания состоит в формировании единой информационной базы.

Для проведения анализа можно использовать информацию, полученную от межправительственных организаций. Существуют специальные базы данных экономической статистики стран.

Часто информация поступает от частных лиц, общественных организаций. Эти субъекты обычно ведут свою статистику. Так, к примеру, Союз охраны птиц в России регулярно устраивает так называемые соловьиные вечера. В конце мая через СМИ организация приглашает всех желающих поучаствовать в подсчете соловьев на территории Москвы. Полученные сведения обрабатываются группой экспертов. После этого сведения переносятся в специальную карту.

Многие журналисты обращаются за информацией к представителям других авторитетных СМИ, пользующихся у аудитории популярностью. Распространенным способом получения данных является опрос. При этом опрашиваемыми могут стать как рядовые граждане, так и эксперты в какой-либо области.

Специфика выбора методики

Перечень показателей, необходимых для проведения анализа, зависит от специфики исследуемого явления. К примеру, если изучается уровень благосостояния населения, приоритетными считаются данные о качестве жизни граждан, прожиточном минимуме на данной территории, размере МРОТ, пенсии, стипендии, потребительской корзины. При исследовании демографической ситуации важны показатели смертности и рождаемости, число мигрантов. Если изучается сфера промышленного производства, важные сведения для статистического анализа – это количество предприятий, их виды, объем продукции, уровень производительности труда и т. д.

Читать еще:  Основная цель анализа внутренней среды организации

Средние показатели

Как правило, при описании тех или иных явлений используются средние арифметические величины. Для их получения числа складывают друг с другом, а полученный результат делят на их количество.

Средние величины используются в качестве обобщающих показателей. Однако они не позволяют описать конкретные моменты. К примеру, в ходе анализа установлено, что средняя зарплата по России составляет 30 тыс. р. Этот показатель не говорит о том, что все работающие граждане страны получают именно эту сумму. Более того, у кого-то зарплата может быть и выше, а у кого-то – ниже этой цифры.

Относительные показатели

Их находят в результате сравнительного анализа. В статистике, кроме средних, используются абсолютные величины. При их сопоставлении как раз и определяются относительные показатели.

Например, установлено, что в один госорган приходит 5 тысяч писем ежемесячно, а в другой – 1 000. Выходит, что первая структура получает в 5 раз больше обращений. При сравнении средних показателей относительная величина может быть выражена в процентах. К примеру, средний заработок фармацевта составляет 70 % от ср. з/п инженера.

Итоговые сводки

Они представляют собой систематизацию признаков исследуемого события для выявления динамики его развития. К примеру, установлено, что в 1997 г. речной транспорт всех ведомств и управлений перевез 52,4 млн тонн груза, а в 2007 г. – 101,2 млн т. Чтобы понять изменения характера транспортировок за период с 1997 по 2007 г., можно сгруппировать итоговые показатели по видам объектов, а затем сравнить группы друг с другом. В итоге можно получить более полные сведения о развитии грузооборота.

Индексы

Их достаточно широко применяют при исследовании динамики событий. Индекс в статистическом анализе – это средний показатель, отражающий изменение явления под воздействием другого события, абсолютные показатели которого признаны неизменными.

К примеру, в демографии в качестве специфического индекса может выступать величина естественной убыли (прироста) населения. Ее определяют при сравнении уровня рождаемости и смертности.

Графики

Они используются для отображения динамики развития события. Для этого применяют фигуры, точки, линии, имеющие условные значения. Графики, с помощью которых выражаются количественные соотношения, именуются диаграммами или динамическими кривыми. Благодаря им можно наглядно увидеть динамику развития какого-то явления.

График, показывающий увеличение количества лиц, страдающих остеохондрозом, представляет собой кривую, уходящую вверх. Соответственно, по ней можно наглядно увидеть тенденцию заболеваемости. Люди, даже не прочитав текстовый материал, могут сформулировать выводы о сложившейся динамике и спрогнозировать развитие ситуации в дальнейшем.

Статистические таблицы

Они очень часто используются для отражения данных. С помощью статистических таблиц можно сопоставлять информацию по изменяющимся со временем показателям, различающимся в зависимости от страны и пр. Они представляют собой наглядную статистику, которой зачастую не нужны комментарии.

Методы

В основе статистического анализа лежат приемы и способы сбора, обработки и обобщения сведений. В зависимости от природы методы могут быть количественными и категориальными.

При помощи первых получают метрические данные, которые по своей структуре являются непрерывными. Их можно измерить при помощи интервальной шкалы. Она представляет собой систему чисел, равные промежутки между которыми отражают периодичность значений изучаемых показателей. Также используется шкала отношений. В ней, кроме расстояния, определяется также порядок значений.

Неметрические (категориальные) данные представляют собой качественные сведения, количество уникальных категорий и значений которых ограничено. Они могут быть представлены в виде номинальных или порядковых показателей. Первые используют для нумерации объектов. Для вторых предусматривается естественный порядок.

Одномерные методы

Они применяются в том случае, если для оценки всех элементов выборки используется единый измеритель или если последних несколько для каждого компонента, но переменные исследуются обособленно друг от друга.

Одномерные методы различаются в зависимости от типа данных: метрические или неметрические. Первые измеряют по относительной или интервальной шкале, вторые – по номинальной или порядковой. Кроме этого, деление методов осуществляется на классы в зависимости от количества исследуемых выборок. При этом необходимо учитывать, что это число определяют по тому, как осуществляется работа с информацией для конкретного анализа, а не по способу сбора данных.

Однофакторное дисперсионное исследование

Цель статистического анализа может состоять в изучении воздействия одного либо нескольких факторов на конкретный признак объекта. Однофакторный дисперсионный метод применяется тогда, когда у исследователя есть 3 и больше независимые выборки. При этом они должны быть получены из генеральной совокупности посредством изменения независимого фактора, для которого отсутствуют количественные измерения по каким-то причинам. Предполагается, что имеются различные и одинаковые выборочные дисперсии. В этой связи следует определить, оказал ли данный фактор значительное влияние на разброс или он стал следствием случайностей, возникших вследствие небольших объемов выборок.

Вариационный ряд

Он представляет собой упорядоченное распределение единиц генеральной совокупности, как правило, по возрастающим (в редких случаях по убывающим) показателям признака и подсчет их числа с тем или другим значением признака.

Вариация является различием в показателе какого-либо признака у различных единиц конкретной совокупности, возникающим в один и тот же момент либо период. К примеру, сотрудники компании отличаются друг от друга по возрасту, росту, доходам, весу и пр. Возникает вариация вследствие того, что индивидуальные показатели признака формируются под комплексным влиянием разных факторов. В каждом конкретном случае они сочетаются по-разному.

Вариационный ряд бывает:

  1. Ранжированным. Он представлен в виде перечня отдельных единиц генеральной совокупности, расположенных в порядке убывания либо возрастания исследуемого признака.
  2. Дискретным. Он представлен в форме таблицы, включающей в себя конкретные показатели изменяющегося признака х и количества единиц совокупности с заданной величиной f признака частот.
  3. Интервальным. В этом случае показатель непрерывного признака задается с помощью интервалов. Они характеризуются частотой t.
Читать еще:  Метод факторного анализа пример

Многомерный статистический анализ

Он проводится, если для оценки элементов выборки применяется 2 и более измерителя, и переменные изучаются одновременно. Такая форма статистического анализа отличается от одномерного способа в первую очередь тем, что при ее использовании внимание сосредотачивается на уровне взаимосвязи между явлениями, а не на средних показателях и распределениях (дисперсиях).

Среди основных методов многомерного статистического исследования выделяют:

  1. Кросс-табуляцию. С ее использованием одновременно характеризуют значение двух и более переменных.
  2. Дисперсионный статистический анализ. Этот метод ориентирован на поиск зависимостей среди экспериментальных данных посредством изучения существенности различий в средних показателях.
  3. Ковариационный анализ. Он тесно связан с дисперсионным методом. При ковариационном исследовании зависимая переменная корректируется в соответствии с информацией, связанной с ней. Это обеспечивает возможность устранения изменчивости, вносимой извне, и, соответственно, повысить эффективность исследования.

Также существует дискриминантный анализ. Он применяется, если зависимая переменная является категориальной, а независимые (предикторы) – интервальными.

Анализ данных: используем методы статистического исследования

Анализ данных и статистика — вещи одного порядка. Если статистика первооснова и источник информации, то анализ данных — это инструмент для ее исследования, и зачастую анализ данных без статистики невозможен.

Статистика — это изучение любых явлений в числовой форме. Статистика используется анализом данных в количественных исследованиях. Противоположность им — качественные, описывающие ситуацию без применения цифр, в текстовом выражении.

Количественный анализ статистических данных проводится по интервальной шкале и по рациональной:

  • интервальная шкала указывает, насколько тот или иной показатель больше или меньше другого и дает возможность подобрать похожие по свойствам соотношения показатели,
  • рациональная шкала показывает, во сколько раз тот или иной показатель больше или меньше другого, но в ней содержатся только положительные значения, что не всегда будет отражать реальное положение дел.

Как используют Data Mining в компании Mail.ru?

Методы анализа статистических данных

В анализе статистических данных можно выделить аналитический этап и описательный. Описательный этап — последний, он включает представление собранных данных в удобном графическом виде – в графиках, диаграммах, дашбордах. Аналитический этап — это анализ, заключающийся в использовании одного из следующих методов:

  • статистического наблюдения – систематического сбора данных по интересующим характеристикам;
  • сводки данных, в которой можно обработать информацию после наблюдения; она описывает отдельные факты как часть общей совокупности или создает группировки, делит информацию по группам на основании каких-либо признаков;
  • определении абсолютной и относительной статистической величины; абсолютная величина придает данным количественные характеристики в индивидуальном порядке, в независимости от других данных; относительные величины описывают одни объекты или признаки относительно других;
  • метода выборки – использовании при анализе не всех данных, а только их части, отобранной по определенным правилам (выборка может быть случайной, стратифицированной, кластерной и квотной);
  • корреляционного и регрессионного анализа — выявляет взаимосвязи данных и причины, по которым данные зависят друг от друга, определяет силу этой зависимости;
  • метода динамических рядов — отслеживает силу, интенсивность и частоту изменений объектов и явлений; позволяет оценить данные во времени и дает возможность прогнозирования явлений.

Программное обеспечение для статистического исследования

Статистические исследования могут проводить маркетологи-аналитики:

Для качественного анализа статистических данных необходимо либо обладать знаниями математической статистики, либо использовать отчетно-аналитическую программу, либо не заниматься этим. Европейские компании давно осознали пользу big data для анализа больших данных, поэтому либо нанимают хороших аналитиков с математическим образованием, либо устанавливают профессиональное программное обеспечение для аналитиков-маркетологов. Ежедневный анализ в этих компаниях помогает им правильно организовывать закупку товаров, их хранение и логистику, корректировать количество персонала и их рабочие графики.

Решения для автоматизации анализа данных позволяют работать с ними аналитикам-маркетологам. Сегодня есть решения, доступные даже небольшим компаниям, такие как Tableau. Их преимущества по сравнению с анализом, проведенным исключительно человеком:

  • невысокая стоимость внедрения (от 2000 рублей в месяц – на февраль 2018 года),
  • современное графическое представление анализа,
  • возможность мгновенно переходить от одного, более полного отчета, к другому, более детальному.

Хотите узнать, как провести анализ и сделать отчеты быстро?

Статистический анализ

Освоение форм и видов статистического наблюдения. Рассмотрение взаимосвязи социально-экономических явлений и процессов, их структуры и закономерностей развития. Изучение метода корреляционно-регрессионного анализа. Оценка полученных результатов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство железнодорожного транспорта

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Уральский государственный университет путей сообщения»

(ФГБОУ ВПО УрГУПС)

Кафедра «Экономика транспорта»

студент гр. УП-211

Статистика — отрасль знаний, в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических (количественных или качественных данных; изучение количественной стороны массовых общественных явлений в числовой форме.

Для выявления зависимостей между социально-экономическими явлениями, прогнозирования их количественных параметров необходимо владеть практическими приемами статистики — сбором первичной статистической информацией, статистической сводкой и группировкой, корреляционным анализом и анализом рядов динамики, а также индексным методом.

Экономико-статистический анализ — это разработка методики, основанной на широком применении традиционных статистических и математико-статистических методов, с целью контроля адекватного отражения исследуемых явлений и процессов.

Задачами работы являются: определение и оценка специфики и особенностей изучаемых явлений и процессов, изучение их структуры, взаимосвязей и закономерностей их развития; освоение форм, видов и способов проведения статистического наблюдения с целью получения необходимой информации для проведения исследования; овладение методом статистических группировок для изучения взаимосвязи социально-экономических явлений и процессов; овладеть методом корреляционно-регрессионного анализа, анализировать полученные результаты.

Читать еще:  Применение методов статистического анализа

Статистика как наука неразрывно связана с другими общественными науками (экономической теорией, финансами и кредитом, экономикой предприятия и т.д.). Она заимствует у этих наук основные экономические категории и опирается на фундаментальные законы этих наук.

1. Статистический анализ рядов распределения

Статистические ряды распределения представляют собой упорядоченное расположение единиц изучаемой совокупности на группы по группировочному признаку. Они характеризуют состав (структуру) изучаемого явления, позволяют судить об однородности совокупности, границах ее изменения, закономерностях развития наблюдаемого объекта.

Проведем статистический анализ ряда распределения по факторному признаку, значения которого представлены в таблице 1.1.

статистический наблюдение корреляционный регрессионный

Таблица 1.1. Показатели рекламной деятельности предприятий г. Екатеринбурга за 2011 г

Статистические методы исследования

Статистика, как наука, предполагает изучение, обработку и анализ количественных данных о самых различных явлениях в жизни человека. Она применяется во множестве сфер жизнедеятельности: медицина, экономика, производство, социология, предоставление разного рода услуг, природоохранная деятельность и т.д. Даже в быту люди часто сталкиваются с необходимостью использования простых статистических методов для решения возникающих задач. Следовательно, о данном направлении нужно узнать как можно больше полезной информации.

Важность саморазвития в области статистики

Даже если вы не осваивали специальность, предполагающую необходимость работы со статистическими данными, не знаете способов, которыми их можно обрабатывать и исследовать, это не значит, что соответствующая информация недоступна. К счастью, каждый может самостоятельно рассмотреть все эффективные методы анализа, применяемые в статистике, понять, какой из них больше подходит для конкретной ситуации.

Чтобы оценить важность изучения указанных материалов, достаточно рассмотреть, где в повседневной жизни мы можем применять статистические исследования:

· оценка рациональности применения семейного бюджета. Для этого в любом случае придется учитывать статистику доходов и расходов, чтобы уравновесить эти две статьи;

· применение разных диет с целью похудения. Здесь тоже не обходится без простых методов статистики. Вам понадобится знать, насколько удается похудеть с тем или иным рационом, чтобы подобрать оптимальную программу питания для максимально быстрого получения ожидаемого результата;

· профессиональные занятия спортом — еще одна область, где без статистики не обойтись. Здесь нужно учитывать количество калорий, получаемых за день, затрачиваемую на тренировках энергию, результаты занятий. Чтобы понимать, насколько эффективной оказывается выбранная программа, придется проводить хотя бы самые простые подсчеты;

· контроль собственного здоровья. Здесь применяются самые простые методы анализа данных. Например, для статистики вы можете записывать показатели ЧСС, артериального давления, продолжительность сна и т.д. Такое исследование поможет выбрать оптимальный жизненный ритм;

· ведение страниц в социальных сетях, например, Инстаграм, с целью заработка. Вам также понадобится контролировать число подписчиков, сопоставлять его с эффективностью деятельности, величиной полученной прибыли.

Как видите, статистические данные – это то, с чем практически каждый из нас сталкивается каждый день. И чтобы их применение было максимально эффективным, нужно знать, какие существуют методы анализа.

Отметим, что разобраться в этой теме сможет каждый желающий – тот, кто занимается саморазвитием, стремится к самосовершенствованию.

Популярные методики анализа в статистике

Рассмотрим самые простые методы, применение которых допускает статистический анализ. Всего их семь:

1. Статистическое наблюдение. Представляет собой обычный сбор информации, который зачастую применяется в социальной сфере. Используется такая методика для получения четких характеристик изучаемых явлений. Все, что нужно в этой ситуации – точные данные, которые можно легко сопоставить для оценки. Они должны быть однообразными.

2. Сводка и группировка материалов наблюдения в статистике. Представляет собой процедуру обработки отдельных единичных фактов, образующих совокупность сведений, полученных в результате проведения каких-либо наблюдений. Такой статистический метод – это способ получения исчерпывающей информации об исследуемых объектах. Чтобы применить методику, необходимо выбрать группировочный признак, определить порядок формирования групп, разработать систему показателей, характеризующих группы, создать примеры таблиц, куда будут заноситься сведения.

3. Абсолютные и относительные статистические величины. С помощью абсолютных величин мы придаем явлениям размерные характеристики. Это может быть время, объем, площадь, масса. Относительные величины представляют собой количественные соотношения, полученные в результате деления одних величин на другие. Таким способом определяют величины уровня развития, динамики интенсивности процесса, структуры и т.д.

4. Вариационные ряды. Такой статистический метод исследования – это дополнение к средним показателям изучаемых величин, их в некоторых ситуациях оказывается недостаточно. Тут внимание сосредоточено на вариации или разбросе показателей каких-либо единиц. Следовательно, речь идет о мониторинге и оценке происходящих изменений.

5. Выборка. Метод предусматривает определение численной характеристики целого по свойствам и отдельно взятых частей. Именно внутренняя связь, которая объединяет единичные части и целое, является основой рассматриваемого метода.

6. Корреляционный и регрессионный анализ. Речь идет об анализе большого количества данных для выявления возможности взаимодействия отдельных показателей. Обычно корреляционный и регрессионный анализ применяются в статистике совместно. Первый позволяет, например, выделить факторы, наиболее воздействующие на конечный признак. Последний может помочь в оценке степени воздействия независимых показателей на зависимый.

7. Ряды динамики. С их применением очень удобно определить скорость, интенсивность развития какого-либо явления. Для работы понадобится учитывать период времени и связанный с ним уровень, статистический показатель. Данный метод статистики хорошо подходит для ситуаций, когда человеку нужно добиться каких-то целей, например, продвинуть страницу в социальной сети.

Как проводить статистический анализ данных, нужно решать в отдельно взятой ситуации. Метод следует выбирать зависимо от того, что вы планируете исследовать, какие сведения изучать и с какими целями. В любом случае, нам удалось понять, что статистика играет важную роль не только в профессиональной, но и в повседневной жизни человека.

Ссылка на основную публикацию
Adblock
detector